Computer Vision Using OpenCV


As an AI scientist and a developer, I have been engaged with AI-applications for many years especially focusing on object detection and recognition purposes. I love thinking that we can get creative in designing neural networks. We can train them supervised, unsupervised, semi or self-supervised, and this gives possibilities to mimic the human brain in a narrow domain. However, in vision applications, there are still things where AI is lacking and will be lacking without computer vision knowledge. Computer vision has been solving detection and recognition problems for many years. However, in the last decade, it seems like AI is seen as a replacement of computer vision. AI can find the optimal model for a specific type of data set and it might achieve generalization better. AI can be designed in a way that it can learn life-long which also brings possibilities of creating models which serve better when they are used longer. However, an AI vision system will be lacking capabilities without computer vision knowledge. First of all, it will require a very big data set to train the model what can be expensive or even not possible. On the other hand, computer vision systems can be modeled only using a hand-drawn template image. Training AI models also requires GPUs. Nevertheless, I do not want to encourage everyone to train AI models for solving any simple problem which could be solved easily computer vision. Last but not least, knowing computer vision, machine learning and especially feature engineering methods helps to design hybrid models that might be more robust to adversarial attacks or changing conditions.

In this lecture, I will briefly introduce how computer vision (especially using the OpenCV library) and machine learning can be used for creating detection and recognition models. Some experience with python, jupyter notebook and some machine learning background would be useful to get more benefits from this lecture.

32 min
02 Jul, 2021

Check out more articles and videos

We constantly think of articles and videos that might spark Git people interest / skill us up or help building a stellar career

Workshops on related topic